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In this paper the methods of Parts 1 and 2 are extended to the case when the elliptic
cylinder is executing angular oscillations about its centreline. At large distances from
the cylinder the solution for a beam of waves tends to a similarity solution that
decays more rapidly with distance than does the similarity solution for rectilinear
oscillations described in Thomas & Stevenson (1972). Figure 4 shows in a remarkable
way how the predicted wave profiles change with distance from the inviscid solution
to the similarity one.

In the latter part of the paper the predictions of Parts 1 and 2 and other theories
are compared with recent experimental observations. The results of the experiments
are in good agreement with the predictions of Parts 1 and 2.

1. Introduction and summary

The generation of internal gravity waves by an elliptic cylinder performing rectilin-
ear oscillations in a slightly viscous Boussinesq fluid whose Brunt—Viisild frequency
N is constant was investigated in Hurley (1997) and Hurley & Keady (1997), hereafter
referred to as Parts 1 and 2 respectively. In §§2 to 5 of the present paper we investi-
gate the waves that are produced when the cylinder is performing angular oscillations
about its centreline. As well as having intrinsic interest, the results obtained may be
useful to experimenters as ‘paddles’ executing angular oscillations are popular for
generating internal waves in the laboratory, see McEwan (1973) and Teoh, Ivey &
Imberger (1997). These experiments investigated the nonlinear interaction of overlap-
ping wave beams. Had the theory to be described here been available then, a single
paddle producing overlapping beams of known linear behaviour may have been a
suitable wave generator.

In §2 the fluid is assumed to be inviscid and it is shown that the stream function
describing the fluid motions can be expressed as a linear combination of the quadratic
terms of the general solution derived in Part 1. In §3 the Fourier decomposition of
this stream function is modified by including in the integrands factors to account for
viscous dissipation as was done in Part 2. The resulting solution is referred to as the
approximate viscous one.

An exact solution of the viscous equations, expressed in terms of a distribution of

1 Dr Hurley died on 5th February 2000 before the final revision of the paper.
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FIGURE 1. Notation.

semi-vortices, is then derived. This solution does not satisfy the boundary condition
at the surface of the ellipse. However, it is shown that as the Reynolds number is
increased it tends to the approximate viscous one which does satisfy the boundary
condition in the limit of large Reynolds number.

The properties of the approximate viscous solution are investigated in §§4 and 5.
It is shown that at large distances from the cylinder the solution for a beam of waves
tends to a similarity one that decays with increasing distance more rapidly than does
the similarity solution for rectilinear oscillations. Attention is then paid to regions
near the cylinder where two beams of waves overlap. Finally the velocity profiles of
the thin boundary layer adjacent to the cylinder are presented; they apply for both
angular and rectilinear oscillations of the cylinder.

In §6 the theories of Parts 1 and 2 are compared with recent experiments of
Gavrilov & Ermanyuk (1997), Ermanyuk & Gavrilov (1999) and Sutherland et al.
(1999).

2. Inviscid solution

We consider the internal gravity waves that are produced in an inviscid Boussinesq
fluid of constant Brunt—Viisédld frequency N by an elliptic cylinder that is executing
small angular oscillations at frequency w about its centreline. The elliptic cross-section
of the cylinder has semi-axes of lengths a and b and we suppose that the inclination
of the a semi-axis to the horizontal is

0; = 0 + ic exp(—imt) (2.1)

where ¢ < 1. The notation is shown in figure 1.
Differentiation of (2.1) gives

do;

dt

= Q exp(—iwt), (2.2)
where

Q=cw (2.3)
is the amplitude of angular oscillations.

The fluid motion may be described in terms of a stream function y(x, y) exp(—iwt)
such that the velocity (u,v) is
oy oy

u = —— exp(—iwt), v = — exp(—iwt), (2.4)
oy ox
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with
oy Py
2
P 2.5
(AP (2.5)
where
N2
2 _
"= 1. (2.6)
The boundary condition on the surface of the ellipse is (Milne-Thomson 1949)
y=10(x*+)")+B (2.7)
where B is a constant.
We introduce the coordinates
0, =Xxsinpg—ycosyu, o_ =Xxsiny+ ycospu (2.8)
where
n = cot p. (2.9)
In terms of them (2.5) is
0%y
=0 2.10
00, 00_ ’ (219
whose general solution is
Y =yi(oy) +yw_(0-) (2.11)

The expressions we take for w, and y_ in (2.11) are motivated by the work
described in Part 1. There it was shown that the solution for an elliptic cylinder
performing rectilinear oscillations could be expressed in the form (2.11) with

o a2 172 o a2 172
Py = Cpoy l+ - (; - ) 1 , Y- =coo l_ - (2_ — 1) ] ) (2.12)
Cy (,+ C_ (ol

where

2 = asin*(u — 0) + b? cos*(u — 0), } (2.13)

¢ = a®sin’(u + 0) + b* cos*(u + 0).

The straight lines ¢, = +c, and 6_ = +c_ are tangential to the ellipse as shown in
figure 2 and the square roots in equations (2.12) take the values shown in figure 3 of
Part 1. The constants o, and o_ in (2.12) were determined by satisfying the boundary
condition on the surface of the ellipse that is appropriate for its performing rectilinear
oscillations.

From the general solution derived in Part 1, for an ellipse performing angular
oscillations the appropriate forms for v, and y_ are

o o2 121 o a2 1/2]
Py = C404 l+ - (; — ) ] , Y =cCc_0_ l_ — (2_ — 1) ] (214)
Ct C+ C_ Cco

where o, and «_ are determined by satisfying the boundary condition (2.7) on the
ellipse.

In Hurley & Hood (2000) it is shown that the solution given by (2.11) and (2.14)
does satisfy (2.7) if

B = —1Q(d® +b%), (2.15)

4
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FIGURE 2. Notation.

_ Qc (a*> —b?)
% = 8(asin (i — 0) +ibcos (u — 0))? (2.16)
and
- 0 e @17)

" 8(asin (i + 0) —ibcos (u+ 0))
(In Hurley & Hood 2000 the opportunity is taken to correct some minor errors in
Parts 1 and 2.)

For waves in the first quadrant the dominant part of the fluid velocity is (0y,. /0o )o 4
where . is given by (2.14) and ¢, is a unit vector in the direction shown in figure

2. Also figure 3(a) of Part 1 gives
. a2\
1 ( - C;) s logl <y

+

N
[9Y
YRY
|
~_
=
38
Il

52 1/2
-+ (2+ — ) . to.>cy (2.18)
s

where each of the bracketed quantities on the right-hand side of (2.18) denotes a
positive quantity. Hence differentiation of (2.14) gives

1/2
1wu:mu_2ci_)/ 2E

oy 004 Cy cl a (63 /ci — D>
4o, . ol 12 2ig? [
_7C+ _21(1_03_ +W’ Cy > 04 > —Cq
172 272
4o ot ay/cy
“we(E) vEmEt e e

Using results in Erdelyi et al. (1954) we find that the Fourier decomposition of

(2.19) is
1o :2i/0@ <JO(K)_2JI;<K)>GXP <in7+> dK. (220)

o4 (30'_,_ Cq
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FIGURE 3. Notation: (a) Oo.s, axes, (b) Oc_s_ axes.

Hence
P+ * J2(K) e O+
=— K— ) dK 2.21
2C+O€+ /0 K xp it Cq ’ ( )
using the identity
2J1(K
) — oK) + (K

K
The results for the dominant parts of waves in the other quadrants corresponding
to (2.21) are found to be

P+ — [ JaK) s O+
— = +iK— | dK 222
2C+O(+ +A K P+ Cy ( )
for waves in the 1st/3rd quadrants and
_ “ hh(K . O
Y- _ 1 / 2K) xp <$1K ") dK (2.23)
2c_o_ o K c_

for waves in the 2nd/4th quadrants.

2.1. Calculation of power radiated and couple acting on cylinder
The time average of the power per unit length of cylinder radiated in the first quadrant

1S
5 L[~ i\ [ Oy
P, =- — 2.24
=L (5) (5o 229

where by (3.38) of Part 1

o o’ 12 g o’ v
P = 1pomn { Loy l+ — <2+ — > ] —c_o_ l — <2 — 1) ] (2.29)
i L c_ 2

and an asterisk denotes the complex conjugate. Calculations using (2.19) and (2.24)
show that non-zero contributions to P; are confined to the portion of the line for
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which |o.| < ¢y and that
P — npownQ*(a*> — b*)?
L 64 ‘

The total power radiated will be 4P; and we find that the instantaneous couple per
unit length of cylinder acting on the cylinder to produce this power is

(2.26)

C= gpoa)Qn(a2 — b*)?cos wt. (2.27)

3. Approximate viscous solution

The approximate viscous solution is derived from the inviscid solution described
above by using the procedure described in §3 of Part 2. We include in the integrands
of (2.22) and (2.23) above factors to account for viscous dissipation. Thus, we take

* Jr(K)

Yy = —_F20+OC+/ exp ($K3)~+S+ + iKaJr) dK, +s; >0, (3.1)
0 C+

Ct

* Lh(K . O_
y_ = $2c_oc_/ 21(< ) exp <$K3)V_S F 1KG> dK, +s_>0, (3.2)
0

c_ c_
where
v v
by = —— ) A= — 33
o 2ckon 8 2czon G3)
v is the kinematic viscosity, and
1
— 3.4
+ = 2R, (3.4)
where
2
R, = % (3.5)
is a Reynolds number and there is a similar relationship between A_ and R_.
The s, and s_ are defined by
Sy =XCOsp+ysiny, S_=—xcospu-+ysiny (3.6)

and the Oo,s; and Ocg_s_ axes are shown in figure 3. However the definitions of s,
and s_ must be slightly modified as described in Appendix B of Part 2.
For example (3.1) states that

Py = —2c+oz+/ oK) exp (—K3)v+s+ +iK (M) dK, s, >0. (3.7)
0 K Ct C+

However, on the line s, = 0 this equation gives the inviscid values for p, and these
are singular on the portion of the line s, = 0 for which |o| < ¢4 (see equation (3.37)
of Part 1). Hence, except for the case of a circular cylinder, (3.7) will give values
that have singularities in the flow field and is therefore unsatisfactory. However, it
was shown at the end of Appendix B of Part 2, that if 4 < 1 this deficiency can be
overcome by taking the line s, = 0 to be to the left of the cylinder (see figure 8 of
Part 2).
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3.1. Derivation of (3.7) from the exact viscous equations

We focus attention on the beam of waves in the first quadrant when y, is given by
(3.7) and satisfies (2.9) of Part 2, namely

Py A
06,0sy  20n dot

=0. (3.8)

The exact equation for y, is equation (2.6) of Part 2, namely

Py LV <041P+ 'y 541P+)=O

os3. + 126()17 dot do3ds?  0Ost

O’y
00,08y

+ cot2u

(3.9)

We follow closely the procedure described in Appendix B of Part 2 and consider
the inviscid case first.

3.1.1. The inviscid case
We take as our singular solution the semi-vortex given by

1 ) 1
Yr+(oy) = pu logo, =i[1 —H(o4)] + p logo|. (3.10)

The Green’s equivalent stratum for the present problem is proportional to the solution
of the singular integral equation

1 ’ d /
1 T4 — 04
that satisfies the condition (see Hurley 1969)
1
/ g(d’)da’ =0, (3.12)
—1
where
o, = O—i, T, = Ti, and subsequently s, = 3, (3.13)
cy o cy

Using results given in Carrier, Krook & Pearson 1966 we find that the solution of
(3.11) and (3.12) is
1— 2ai
(=)
It is then a straightforward matter to show using results in Erdélyi et al. (1954)
that

gld!) = (3.14)

2upcy [ (1—27})log(a, —7,)d7,
ry (1- Ti)l/ 2

where I'y is the interval (—1,1) of the O7/, axis with an indentation below ¢’,, gives

the velocities given by (2.19).

pi(al) = (3.15)

3.1.2. The viscous case
For the viscous solution we take

e o[ (=2l (a — 7y dT
Yy = 20(+c+/r (=) ) (3.16)
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where . satisfies (B9) of Appendix B of Part 2, namely

+ i Vil = —2i8(’,)d(s). (3.17)

We note that the homogeneous form of (3.17) is the exact equation (3.9). Hence !,
given by (3.16) will also satisfy this exact equation except where ¢/, = 7/,.
Equation (B 12) of Part 2 gives
1 /°° exp(iKo', — A, K35,
0

v R
1pV+ T K

dK, . —0. (3.18)

Equations (3.16) and (3.18) now give
2mycy /*‘ exp(iK o', — 21 K7s',) / (1—27;
0 r, (

Wy, ~ exp(—iK 7, )dK d7/,

T K 1—1})l2
Ay — 0. (3.19)
Carrying out the integral with respect to 7/, gives
: = Jh(K o
Pl o~ —2oc+c+/ 2(K) exp(—K 2.5, + iKo')dK, i —0 (3.20)
0

which is equation (3.7) above.

We conclude that as 4, — 0 the exact solution (3.16) tends to the approximate
one (3.7) almost everywhere throughout the flow field. Exceptions are the vanishingly
small regions surrounding the points where the characteristics touch the ellipse, see
end of §4.3 of Part 2.

4. Properties of a beam of waves in the approximate viscous solution
We focus attention on the beam of waves in the first quadrant for which (3.7) gives
0 . * .
W _ —21<x+/ Jo(K) exp <—K3;L+S+ n K‘”) dK. (4.1)
doy 0 Ct Ct
4.1. Solution at large distances from the cylinder
Defining a distance parameter
d=7,> (4.2)
Ct+
for large values of d the major contribution to the integral in (4.1) comes from small
values of K so that we may replace J,(K) therein by K?/8 to obtain

10 —i [” iK
L 1/ K2exp (—K3d n 1“*) dK, d — . (4.3)
oy 0oy 4 J, cy
On introducing the similarity parameter
ot /ct

(= q1/3

(4.3) gives
Lops i / K exp(—k® + ik) dk. (4.5)
2d J,

e 80'+
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It is of interest to compare this similarity solution with that for rectilinear oscil-
lations given by (4.7) of Part 2 and by Thomas & Stevenson (1972), which can be
written

1 (31p+ 1 * 3 .
—— ~ k —k k() dk. 4.6
S~ s [ kexp (k! kD) (46)

The similarity parameter is the same for both cases but for angular oscillations
the fluid velocities decay more rapidly with distance from the ellipse than do those
for rectilinear oscillations. Rectilinear oscillations are dipolar; angular oscillations
are quadripolar. In the distant zone d > 1 Lighthill (1978, p. 380) shows that the
excitation becomes effectively compact due to viscous attentuation, and the higher
the order of the multipole source the more rapid the decrease of wave velocities with
distance.

4.2. The normalized velocity profiles

On the centreline of the beam o, = 0 and (4.1) gives the centreline velocity (as a
function of d)

o0

Lowe) / (K exp(—K d) dK . 4.7)
g4+=0 0

oy 0oy

We define the beam width to be 2¢, (as a function of d) where ¢, is the smallest
positive value for which the real part of dy, /do, vanishes. That is,

/ J2(K ) exp(—K 3d) sin (K Z) dK = 0. (4.8)
0 +

Values of the real and imaginary parts of the normalized velocity profiles (0. /do.)/
|0y /004 |s,—o are given in figure 4 as functions of ¢, /c, for a number of values of
d. The figure shows in a remarkable way how the profiles change from the inviscid
one (equation (2.19)) to the similarity one (equation (4.5)) as d increases from zero to
infinity.

5. The velocities near the cylinder in the approximate viscous solution

For distances from the cylinder of order a or less the ., and yp_ waves significantly

overlap and the fluid velocities v are given by
0 oyp_

— %ﬁ + %a_ (5.1)
where dy,/do, and Jy_/do_ are given by (3.1) and (3.2) and 6, and o_ are unit
vectors as shown in figure 2.

We consider the simple and instructive case 8§ = 0 and b = 0 when the ellipse
becomes a horizontal flat plate of length 2a. In this case ¢, = ¢ = asinu and
Ay = A_ = A, say. We focus attention on the triangular region bounded by the upper
surface of the plate and the lines ¢, = —asinu and o_ = asinpu. Figure 4 shows
how the values of dy, /do, tend to the inviscid values as the Reynolds number R
increases. Hence when R > 1 the values of dy, /0o, and dy_/do_, will be close
to the inviscid values, whose Cartesian components (u,v) are found, using equation
(2.19) to be

(5.2)

1—20" 1—26"
u:2occosu{2(a’+—a/)+ ks ( o) },

(Gi — 1)1 B (67 —1)1/2
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2l (@ =0,
2—15
1 2-11
2—7
o0
0 - —
oy, [|0w, 0.5 5 . 2.0
oa, | | da, 6=0 i T4/Gy
-2
-3
(b)
2 d=0
2.0

FIGURE 4. The normalized velocity profiles (0y,/004)/|0y /004 |5, —o: (a) real part;
(b) imaginary part.

, S 1—20" (1—2¢")
v = 2<xsm,u{2(0+ +d )+ D)7 + o =12’ (5.3)
where (¢/, — 1)"/? and (¢” — 1)/ take the values given in figure 3 of Part 1. Also
o= Qa A =X 4y
= 8sin g’ oL = ny, o_= ny
where
X' =x/a and )y =y/a. (5.4)

On the upper surface of the plate

_ —dioccos (1 — 2x")
- (1 _ x/2)1/2

(5.5)

and
v = 8ax’sin 4, (5.6)

an expression that will be needed in the next section.

5.1. The oscillatory boundary layer on the surface of the plate

We continue consideration of the case when # = 0 and b = 0 when the ellipse
becomes a horizontal flat plate. We suppose that the fluid is slightly viscous and will
investigate the oscillatory boundary layer that develops above the surface of the plate.
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The governing boundary-layer equation is (Schlichting 1968, p. 411)
@ _ 0%u _ 0U(X)
)

where v is assumed to be constant and U(x') is the velocity at the surface of the plate
given by inviscid theory. Hence by (5.5)

U(x') = ig(x),

(5.7)

where
cos (1 — 2x7) (5.8)
(1 _ x/2)1/2

Again following Schlichting we introduce the coordinate system Ox*y* linked to the
plate with Ox" along its surfaces. For a point close to the plate the difference between
the velocities and accelerations relative to the Oxy and Ox"y* axes will be in the
direction perpendicular to the plate. Hence the governing boundary-layer equation
will be (5.7) with (x',)’) replaced by (x*,y"). Hence it is

g(x') = —4u

. 2. %
' — llal —ig(x") = 0. (5.9)
0y
Also it follows from (5.5) and (5.6) that the boundary conditions are
uww=0 on y"=0 (5.10)
and
u" —ig(x") asy’ — oo (5.11)
The solution of (5.9) which satisfies the boundary conditions is
R — S
U =ig(x") {1 —exp (21/2 exp 312 (5.12)
where
L s\ 12
=y (7) . (5.13)
On multiplying by exp(—iwt) and taking real parts we obtain
* e . _é . é
u (&, ot) = g(x") {sm wt — exp (21/2> sin <wt — 21/2) } , (5.14)

where g(x) is given by (5.8).

Values of u*(£, wt)/g(x") for successive values of wt are given in figure 5. We note
that as & — oo, u* — g(x")sin wt, the tangential velocity at the surface of the plate as
given by inviscid theory.

Let us define the outer edge of the viscous boundary layer to be at ¢ =y*(w/v)/> =4,
that is at y* = 4(v/w)'/2. Then since the length scale for the variations in the velocities
in the inviscid solution near the plate is a we have by (5.23) and (5.24) that at
v =4v/w)?

v =0, u =g(x")sinwt, (5.15)
or in other words that the inviscid boundary condition is approximately satisfied at
the outer edge of the boundary layer if the inequality (v/w)"? < a is satisfied. By
(3.4) and (3.5) this inequality can be written

L< L (5.16)
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H
2
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H
0.8} 4
- 31
% 06 7
K<Y
=
2 04
< 02
> wt=0
0 1 2 3 —14 <
0.2

FIGURE 5. Velocity profiles of the oscillatory boundary layer on a horizontal plate for successive
values of wt. (See (5.14).)

Hence if (5.17) is satisfied we may, to leading order in A, replace the viscous boundary
condition at the surface of the plate by the inviscid one.

This conclusion clearly holds for all ellipses performing either angular or rectilinear
oscillations. For example, consider a circular cylinder performing horizontal oscilla-
tions at speed U. Using results given in the Appendix of Part 1 we find that the
tangential fluid velocity at the surface of the cylinder given by inviscid theory is

_ U(sin g +icos p) sin 2¢
2cos (u—@)cos(p+ @)’

where ¢ is the angular coordinate of a point on the surface of the cylinder. The
preceding analysis holds with u given by (5.5) replaced by u, given by (5.18).

(5.17)

ut=

6. Comparison of theories with recent experiments
6.1. Circular motion of the cylinder

In a recent paper Gavrilov & Ermanyuk (1997) describe experiments on a circular
cylinder whose centre is performing circular translational motions whose radius ¢ is
small compared to the radius of the cylinder a. They observed the very interesting
result that if the motion of the centre is in the clockwise direction the internal waves
are generated only in quadrants I and III and not in quadrants II and IV.

We now investigate if these results are consistent with the theory of Parts 1 and
2, which was based on the assumption that all time-dependent quantities had time
variation exp(—iwt). Since only real parts have physical meaning, in particular

stream function = Re ¥ (x, y, t) (6.1)
where
¥ (x,,t) = p(x, y) exp(—iwt) (6.2)
and y(x, y) is a complex valued function. Equation (3.42) of Part 1 can be written

2 1/2 1/2
w(x,y):aour{o;—(;’—) }~|—aoc{o;—<(;§—1> } (6.3)
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(@ ) (b)
o Yo % ¥,)

FIGURE 6. Position of the centre of a cylinder executing circular motion: (a) clockwise rotation;
(b) anti-clockwise rotation.

where

oy = 2{Vsinp+ Ucospu+i(V cospu— Usinp)} = 3(U +iV) exp(—ip) (6.4)

o = H{Vsinu— Ucospu+i(Vcosp+ Usinp)} = 3(—U +iV)exp(—ip). (6.5
(U, V) is the velocity of the cylinder, u the inclination of the characteristics to the
y y
horizontal and

0, =XSsinp—ycosy, oG_ = Xxsinp-+ ycos/. (6.6)
Also the values of the square-roots in (6.3) are given figure 3 of Part 1.
Now suppose that in the experiments the centre of the cylinder, having coordinates

(x¢» ye), 1s describing in a clockwise direction at angular velocity @ < N, a circle of
radius ¢ < a. Suppose that at t =0, x. =0 and y. = ¢. Then

X. =¢sinwt, Y. = ecoswt, (6.7)

X. = wecoswt, J.= —mesinwt. (6.8)

In these equations wt is the angle between the Oy-axis and the current position of P
the centre of the cylinder. (See figure 6a.)

Equation (6.8) shows that the horizontal and vertical motions are out-of-phase.
However (6.3) was based on the assumption that U and V were in phase. Hence a
direct application of (6.3) will not give the combined motions being considered.

First we determine the motion due to X. = wéecos wt using (6.3) by taking U = we
and V = 0. Denoting the resulting stream function by y;(x, y) we have

-G )G o

To determine the motion due to j. = —wesinwt, we note that it can be written
yo = wecos(wt + n/2) = Re {weexp(—i(wt + n/2))}. Hence denoting the consequent
stream function by a subscript 2 we have from (6.1) that

¥a(x, y,1) = pa(x, y) exp(—i(wt + 1/2))
= —i,(x, y) exp(—imt) (6.10)

a .
pi(x,y) = F e exp(—ip)

where y,(x, y) is given by (6.3) with U = 0 and V = we. Thus

a . : ot o2 2 o a2 2
Pa(x,y) = Ewaexp(—lu) o <c12 — ) + o <a2 — 1) . (6.11)
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Hence the stream function for the combined horizontal and vertical motions of the
cylinder is the real part of

b4 (X, Y, t) = (1P1(X, y) - in(x7 y)) exp(—ia)t)
02 1/2
— aweexp(—ip) {“J _ <+ - ) } exp(—iot), (6.12)

using equations (6.9) to (6.11).

Equation (6.12) gives the o, waves in quadrants I and III and shows that the o_
ones in quadrants II and IV vanish. Hence the theory of Parts 1 and 2 is consistent
with the experiments of Gavrilov & Ermanyuk.

The experiments described by Gavrilov & Ermanyuk showed that when the centre
of the cylinder is rotating in the clockwise direction (as viewed from a point on the
axis of the cylinder) there are no waves in quadrants II and IV. When the same
experiment is viewed from the opposite end of the cylinder, the cylinder is rotating
in the anti-clockwise direction and there are no waves in quadrants I and III.

6.2. The experiments of Ermanyuk & Gavrilov (1999)

The paper describes meticulous experiments on the internal waves produced by a
circular cylinder oscillating in a horizontal direction. Oscillations of amplitudes as
small as 0.5 mm were used.

They show in figures 2 and 3 that the experimental results compare favourably
with theoretical predictions of Parts 1 and 2.

6.3. The experiments of Sutherland et al.

The paper describes an interesting new instrument, ‘the synthetic schlieren’, for in-
vestigating the motions occurring in a stratified fluid and contain a valuable set
of experimental results for a circular cylinder executing vertical oscillations. The
experimental results were in agreement with the theory of Parts 1 and 2.

7. Conclusions
7.1. Angular oscillations

We have described an extension of Parts 1 and 2 that described an investigation of
the internal waves that are generated by an elliptic cylinder performing rectilinear
oscillations to the case when the cylinder is performing angular oscillations about its
centre.

The assumptions that must be satisfied in both cases for the results to hold are:

(i) that the flow is laminar everywhere and that no flow separations occur;

(ii) that A =1/2nR < 1 where R = a’w/v is the Reynolds number (see §3);

(ii1) that V/wa is small where V is a typical velocity of a point on the surface of
the ellipse.

It was found that at large distances from the cylinder the solution tends to a
similarity one that decays more rapidly with increasing distance from the cylinder
than does the similarity solution for rectilinear oscillations. Close to the cylinder the
solution tends to the inviscid one as the Reynolds number is increased except in a
thin viscous boundary layer that forms on the surface of the cylinder. Across this
boundary layer the fluid velocities change from the values given by inviscid theory
to those given by the no-slip boundary condition at the surface of the ellipse. The
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velocity profiles in the boundary layer are presented. The results described in this
paragraph clearly also hold for all ellipses performing either angular or rectilinear
oscillations.

7.2. Comparison of theories with recent experimental observations

In all the experiments the Reynolds number was high and the cross-section of the
cylinder was circular. The centre of the cylinder performed rectilinear oscillations in
either the vertical or the horizontal direction, or circles of small radius. In the last
case, beams of waves were observed in only two quadrants. This result is predicted
by the theory of Parts 1 and 2. The other experimental results were in accord with
the predictions of the theory of Parts 1 and 2.

The author wishes to acknowledge the suggestions of a reviewer which have
improved the presentation of the paper.
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